Electrical Properties

Electrical Properties

1 May 2020 Off By Sdbamie

17) Electrical Properties


Electrical Conduction

17.2 Ohm’s Law

When an electric potential V is applied across a material, a current of magnitude I flows. In most metals, at low values of V, the current is proportional to V, according to Ohm’s law:
I = V/R

where R is the electrical resistance. R depends on the intrinsic resistivity r of the material and on the geometry (length l and area A through which the current passes). R = rl/A


17.3 Electrical Conductivity

The electrical conductivity is the inverse of the resistivity: s = 1/r.
The electric field in the material is E=V/l, Ohm’s law can then be expressed in terms of the current density j= I/A as:
j = s E
The conductivity is one of the properties of materials that varies most widely, from 107 (W-m) typical of metals to 10-20 (W-m) for good electrical insulators. Semiconductors have conductivities in the range 10-6 to 104 (W-m).


17.4 Electronic and Ionic Conduction

In metals, the current is carried by electrons, and hence the name electronic conduction. In ionic crystals, the charge carriers are ions, thus the name ionic conduction (see Sect. 19.15).


17.5 Energy Band Structures in Solids

When atoms come together to form a solid, their valence electrons interact due to Coulomb forces, and they also feel the electric field produced by their own nucleus and that of the other atoms. In addition, two specific quantum mechanical effects happen. First, by Heisenberg’s uncertainty principle, constraining the electrons to a small volume raises their energy, this is called promotion. The second effect, due to the Pauli exclusion principle, limits the number of electrons that can have the same property (which include the
energy). As a result of all these effects, the valence electrons of atoms form wide valence bands when they form a solid. The bands are separated by gaps, where electrons cannot exist. The precise location of the bands and band gaps depends on the type of atom (e.g., Si vs. Al), the distance between atoms in the solid, and the atomic arrangement (e.g., carbon vs. diamond).

In semiconductors and insulators, the valence band is filled, and no more electrons can be added, following Pauli’s principle. Electrical conduction requires that electrons be able to gain energy in an electric field; this is not possible in these materials because that would imply that the electrons are promoted into the forbidden band gap.
In metals, the electrons occupy states up to the Fermi level. Conduction occurs by promoting electrons into the conduction band, that starts at the Fermi level, separated by the valence band by an infinitesimal amount.


17.6 Conduction in Terms of Band and Atomic Bonding Models

Conduction in metals is by electrons in the conduction band. Conduction in insulators is by electrons in the conduction band and by holes in the valence band. Holes are vacant states in the valence band that are created when an electron is removed.
In metals there are empty states just above the Fermi levels, where electrons can be promoted. The promotion energy is negligibly small so that at any temperature electrons can be found in the conduction band. The number of electrons participating in electrical conduction is extremely small.
In insulators, there is an energy gap between the valence and conduction bands, so energy is needed to promote an electron to the conduction band. This energy may come from heat, or from energetic radiation, like light of sufficiently small wavelength.
A working definition for the difference between semiconductors and insulators is that in semiconductors, electrons can reach the conduction band at ordinary temperatures, where in insulators they cannot. The probability that an electron reaches the conduction band is about exp(-Eg/2kT) where Eg is the band gap and kT has the usual meaning. If this probability is, say, < 10-24 one would not find a single electron in the conduction band in a solid of 1 cubic centimeter. This requires Eg/2kT > 55. At room temperature, 2kT = 0.05 eV; thus Eg > 2.8 eV can be used as the condition for an insulator.
Besides having relatively small Eg, semiconductors have covalent bond, whereas insulators usually are partially ionic bonded.


17.7 Electron Mobility

Electrons are accelerated in an electric field E, in the opposite direction to the field because of their negative charge. The force acting on the electron is -eE, where e is the electric charge. This force produces a constant acceleration so that, in the absence of obstacles (in vacuum, like inside a TV tube) the electron
speeds up continuously in an electric field. In a solid, the situation is different. The electrons scatter by collisions with atoms and vacancies that change drastically their direction of motion. Thus electrons move randomly but with a net drift in the direction opposite to the electric field. The drift velocity is constant, equal to the electric field times a constant called the mobility m,
vd= – me E
which means that there is a friction force proportional to velocity. This friction translates into energy that goes into the lattice as heat. This is the way that electric heaters work.
The electrical conductivity is:
s = n |e| me
where n is the concentration of electrons (n is used to indicate that the carriers of electricity are negative particles).


17.8 Electrical Resistivity of Metals

The resistivity then depends on collisions. Quantum mechanics tells us that electrons behave like waves. One of the effects of this is that electrons do not scatter from a perfect lattice. They scatter by defects,
which can be:

  • atoms displaced by lattice vibrations
  • vacancies and interstitials
  • dislocations, grain boun daries
  • impurities

One can express the total resistivity rtot by the Matthiessen rule, as a sum of resistivities due to thermal vibrations, impurities and dislocations. Fig. 19.8 illustrates how the resistivity increases with temperature, with deformation, and with alloying.


17.9 Electrical Characteristics of Commercial Alloys

The best material for electrical conduction (lower resistivity) is silver. Since it is very expensive, copper is preferred, at an only modest increase in r. To achieve low r it is necessary to remove gases occluded in the metal during fabrication. Copper is soft so, for applications where mechanical strength is important, the alloy CuBe is used, which has a nearly as good r. When weight is important one uses Al, which is half as good as Cu. Al is also more resistant to corrosion.
When high resistivity materials are needed, like in electrical heaters, especially those that operate at high temperature, nichrome (NiCr) or graphite are used.


17.10 Intrinsic Semiconductor

Semiconductors can be intrinsic or extrinsic. Intrinsic means that electrical conductivity does not depend on impurities, thus intrinsic means pure. In extrinsic semiconductors the conductivity depends on the concentration of impurities.
Conduction is by electrons and holes. In an electric field, electrons and holes move in opposite direction because they have opposite charges. The conductivity of an intrinsic semiconductor is:  s = n |e| me + p |e| mh

where p is the hole concentration and mh the hole mobility. One finds that electrons move much faster than holes: me > mh

In an intrinsic semiconductor, a hole is produced by the promotion of each electron to the conduction band. Thus: n = p
Thus, s = 2 n |e| (me + mh) (only for intrinsic semiconductors).


17.11 Extrinsic Semiconductor

Unlike intrinsic semiconductors, an extrinsic semiconductor may have different concentrations of holes and electrons. It is called p-type if p>n and n-type if n>p. They are made by doping, the addition of a very small concentration of impurity atoms. Two common methods of doping are diffusion and ion implantation.
Excess electron carriers are produced by substitutional impurities that have more valence electron per atom than the semiconductor matrix. For instance phosphorous, with 5 valence electrons, is an electron donor in Si since only 4 electrons are used to bond to the Si lattice when it substitutes for a Si atom. Thus, elements in columns V and VI of the periodic table are donors for semiconductors in the IV column, Si and Ge. The energy level of the donor state is close to the conduction band, so that the electron is promoted (ionized) easily at room temperature, leaving a hole (the ionized donor) behind. Since this hole is unlike a hole in the matrix, it does not move easily by capturing electrons from adjacent atoms. This means that the conduction
occurs mainly by the donated electrons (thus n-type).
Excess holes are produced by substitutional impurities that have fewer valence electrons per atom than the matrix. This is the case of elements of group II and III in column IV semiconductors, like B in Si. The bond with the neighbors is incomplete and so they can capture or accept electrons from adjacent silicon atoms.
They are called acceptors. The energy level of the acceptor is close to the valence band, so that an electron may easily hop from the valence band to complete the bond leaving a hole behind. This means that conduction occurs mainly by the holes (thus p-type).


17.12 The Temperature Variation of Conductivity and Carrier Concentration

Temperature causes electrons to be promoted to the conduction band and from donor levels, or holes to accepter levels. The dependence of conductivity on temperature is like other thermally activated processes: s = A exp(–Eg/2kT)

where A is a constant (the mobility varies much more slowly with temperature). Plotting ln s vs. 1/T produces a straight line of slope Eg/2k from which the band gap energy can be determined. Extrinsic semiconductors have, in addition to this dependence, one due to the thermal promotion of electrons from donor levels or holes from acceptor levels. The dependence on temperature is also exponential but it eventually saturates at high temperatures where all the donors are emptied or all the acceptors are filled.
This means that at low temperatures, extrinsic semiconductors have larger conductivity than intrinsic semiconductors. At high temperatures, both the impurity levels and valence electrons are ionized, but since the impurities are very low in number and they are exhausted, eventually the behavior is dominated by the intrinsic type of conductivity.


17.14 Semiconductor Devices

A semiconductor diode is made by the intimate junction of a p-type and an n-type semiconductor (an n-p junction). Unlike a metal, the intensity of the electrical current that passes through the material depends on the polarity of the applied voltage. If the positive side of a battery is connected to the p-side, a situation called forward bias, a large amount of current can flow since holes and electrons are pushed into the junction region, where they recombine (annihilate). If the polarity of the voltage is flipped, the diode operates under reverse bias. Holes and electrons are removed from the region of the junction, which therefore becomes depleted of carriers and behaves like an insulator. For this reason, the current is very small under reverse bias. The asymmetric current-voltage characteristics of diodes (Fig. 19.20) is used to convert alternating current into direct current. This is called rectification.
A p-n-p junction transistor contains two diodes back-to-back. The central region is very thin and is called the base. A small voltage applied to the base has a large effect on the current passing through the transistor, and this can be used to amplify electrical signals (Fig. 19.22). Another common device is the MOSFET transistor where a gate serves the function of the base in a junction transistor. Control of the current through the transistor is by means of the electric field induced by the gate, which is isolated electrically by an oxide layer.


17.15 Conduction in Ionic Materials

In ionic materials, the band gap is too large for thermal electron promotion. Cation vacancies allow ionic motion in the direction of an applied electric field, this is referred to as ionic conduction. High temperatures produce more vacancies and higher ionic conductivity.
At low temperatures, electrical conduction in insulators is usually along the surface, due to the deposition of moisture that contains impurity ions.

17.16 Electrical Properties of Polymers

Polymers are usually good insulators but can be made to conduct by doping. Teflon is an exceptionally good insulator.


Dielectric Behavior

A dielectric is an electrical insulator that can be made to exhibit an electric dipole structure (displace the negative and positive charge so that their center of gravity is different).


17.17 Capacitance

When two parallel plates of area A, separated by a small distance l, are charged by +Q, –Q, an electric field develops between the plates
E = D/ee0

where D = Q/A. e0 is called the vacuum permittivity and e the relative permittivity, or dielectric constant (e = 1 for vacuum). In terms of the voltage between the plates, V = E l, V = Dl/ee0 = Q l/Aee0 = Q / C
The constant C= Aee0/l is called the capacitance of the plates.


17.18 Field Vectors and Polarization

The dipole moment of a pair of positive and negative charges (+q and –q) separated at a distance d is p = qd. If an electric field is applied, the dipole tends to align so that the positive charge points in the field direction. Dipoles between the plates of a capacitor will produce an electric field that opposes the applied field. For a given applied voltage V, there will be an increase in the charge in the plates by an amount Q’ so that the total charge becomes Q = Q’ + Q0, where Q0 is the charge of a vacuum capacitor with the same V.
With Q’ = PA, the charge density becomes D = D0 E + P, where the polarization P = e0 (e–1) E .


19.19 Types of Polarization

Three types of polarization can be caused by an electric field:

  1. Electronic polarization: the electrons in atoms are displaced relative to the nucleus.
  2. Ionic polarization: cations and anions in an ionic crystal are displaced with respect to each other.
  3. Orientation polarization: permanent dipoles (like H2O) are aligned.


17.20 Frequency Dependence of the Dielectric Constant

Electrons have much smaller mass than ions, so they respond more rapidly to a changing electric field. For electric field that oscillates at very high frequencies (such as light) only electronic polarization can occur. At smaller frequencies, the relative displacement of positive and negative ions can occur. Orientation of permanent dipoles, which require the rotation of a molecule can occur only if the oscillation is relatively slow (MHz range or slower). The time needed by the specific polarization to occur is called the relaxation time.

17.21 Dielectric Strength

Very high electric fields (>108 V/m) can free electrons from atoms, and accelerate them to such high energies that they can, in turn, free other electrons, in an avalanche process (or electrical discharge). This is called dielectric breakdown, and the field necessary to start the is called the dielectric strength or breakdown strength.

17.22 Dielectric Materials

Capacitors require dielectrics of high e that can function at high frequencies (small relaxation times). Many of the ceramics have these properties, like mica, glass, and porcelain). Polymers usually have lower e.

17.23 Ferroelectricity

Ferroelectric materials are ceramics that exhibit permanent polarization in the absence of an electric field. This is due to the asymmetric location of positive and negative charges within the unit cell. Two possible arrangements of this asymmetry results in two distinct polarizations, which can be used to code “0” and “1” in ferroelectric memories. A typical ferroelectric is barium titanate, BaTiO3, where the Ti4+ is in the center of the unit cell and four O2- in the central plane can be displaced to one side or the other of this central ion.

17.24 Piezoelectricity

In a piezolectric material, like quartz, an applied mechanical stress causes electric polarization by the relative displacement of anions and cations.

विद्युत चालन

17.2 ओम का नियम

जब किसी सामग्री में एक विद्युत विभव V लागू किया जाता है, तो परिमाण की एक धारा मैं प्रवाहित होती है। अधिकांश धातुओं में, V के कम मूल्यों पर, ओम के नियम के अनुसार, धारा V के समानुपाती है:
I = V / R

जहां R विद्युत प्रतिरोध है। आर सामग्री की आंतरिक प्रतिरोधकता आर और ज्यामिति (लंबाई एल और क्षेत्र ए जिसके माध्यम से वर्तमान गुजरता है) पर निर्भर करता है। आर = आरएल / ए

17.3 विद्युत चालकता

विद्युत चालकता प्रतिरोधकता का विलोम है: s = 1 / r।
सामग्री में विद्युत क्षेत्र E = V / l है, तो ओम का नियम वर्तमान घनत्व j = I / A के रूप में व्यक्त किया जा सकता है:
j = s E
चालकता उन सामग्रियों के गुणों में से एक है जो सबसे व्यापक रूप से भिन्न होती है, अच्छे विद्युत इन्सुलेटर के लिए धातुओं के 107 (डब्ल्यूएम) से 10-20 (डब्ल्यूएम) तक विशिष्ट। अर्धचालकों की 10-6 से 104 (Wm) सीमा में चालकता है।

17.4 इलेक्ट्रॉनिक और आयनिक चालन

धातुओं में, इलेक्ट्रॉनों द्वारा विद्युत प्रवाह किया जाता है, और इसलिए इसका नाम इलेक्ट्रॉनिक चालन है। आयनिक क्रिस्टल में, आवेश वाहक आयन होते हैं, इस प्रकार आयनिक चालन का नाम (देखें संप्रदाय। 19.15)।

17.5 सोलिड्स में ऊर्जा बैंड संरचनाएं

जब परमाणु एक ठोस बनाने के लिए एक साथ आते हैं, तो उनके वैलेंस इलेक्ट्रॉनों कूलम्ब बलों के कारण बातचीत करते हैं, और वे अपने स्वयं के नाभिक और अन्य परमाणुओं द्वारा उत्पादित विद्युत क्षेत्र को भी महसूस करते हैं। इसके अलावा, दो विशिष्ट क्वांटम यांत्रिक प्रभाव होते हैं। सबसे पहले, हाइज़ेनबर्ग के अनिश्चितता सिद्धांत द्वारा, इलेक्ट्रॉनों को थोड़ी मात्रा में विवश करना उनकी ऊर्जा को बढ़ाता है, इसे पदोन्नति कहा जाता है। पाउली अपवर्जन सिद्धांत के कारण दूसरा प्रभाव, इलेक्ट्रॉनों की संख्या को सीमित करता है जिनके पास समान संपत्ति हो सकती है (जिसमें शामिल हैं
ऊर्जा)। इन सभी प्रभावों के परिणामस्वरूप, परमाणुओं की वैलेंस इलेक्ट्रॉन्स एक ठोस बनाने के दौरान व्यापक वैलेंस बैंड बनाती हैं। बैंड अंतराल द्वारा अलग किए जाते हैं, जहां इलेक्ट्रॉनों का अस्तित्व नहीं हो सकता है। बैंड और बैंड अंतराल की सटीक स्थिति परमाणु के प्रकार (जैसे, सी बनाम अल) पर निर्भर करती है, ठोस में परमाणुओं के बीच की दूरी, और परमाणु व्यवस्था (जैसे, कार्बन बनाम हीरा)।

अर्धचालक और इन्सुलेटर में, वैलेंस बैंड भरा हुआ है, और पाउली के सिद्धांत का पालन करते हुए और अधिक इलेक्ट्रॉनों को नहीं जोड़ा जा सकता है। विद्युत चालन के लिए आवश्यक है कि इलेक्ट्रॉन एक विद्युत क्षेत्र में ऊर्जा प्राप्त करने में सक्षम हों; इन सामग्रियों में यह संभव नहीं है क्योंकि इसका मतलब है कि इलेक्ट्रॉनों को निषिद्ध बैंड अंतराल में बढ़ावा दिया जाता है।
धातुओं में, इलेक्ट्रॉनों का प्रवेश फर्मी स्तर तक होता है। चालन बैंड में इलेक्ट्रॉनों को बढ़ावा देने के द्वारा प्रवाहकत्त्व होता है, जो कि फ़र्मिनी स्तर पर शुरू होता है, जो कि एक अनंत राशि द्वारा वैलेंस बैंड द्वारा अलग किया जाता है।

17.6 बैंड और परमाणु संबंध मॉडल के संदर्भ में आचरण

धातुओं में प्रवाहकत्त्व बैंड में इलेक्ट्रॉनों द्वारा होता है। इंसुलेटर में चालन चालन बैंड में इलेक्ट्रॉनों द्वारा और वैलेंस बैंड में छेद द्वारा होता है। वेलेंस बैंड में छेद खाली अवस्थाएं हैं जो एक इलेक्ट्रॉन को हटाए जाने पर बनाई जाती हैं।
धातुओं में फर्मी स्तरों के ठीक ऊपर खाली अवस्थाएँ होती हैं, जहाँ इलेक्ट्रॉनों को बढ़ावा दिया जा सकता है। पदोन्नति ऊर्जा लापरवाही से छोटी है ताकि किसी भी तापमान पर इलेक्ट्रॉनों को चालन बैंड में पाया जा सके। विद्युत चालन में भाग लेने वाले इलेक्ट्रॉनों की संख्या बेहद कम होती है।
इंसुलेटर में वैलेंस और कंडक्शन बैंड के बीच एनर्जी गैप होता है, इसलिए कंडक्शन बैंड में इलेक्ट्रॉन को बढ़ावा देने के लिए एनर्जी की जरूरत होती है। यह ऊर्जा गर्मी से, या ऊर्जावान विकिरण से, पर्याप्त रूप से छोटे तरंग दैर्ध्य के प्रकाश की तरह आ सकती है।
अर्धचालक और इन्सुलेटर के बीच अंतर के लिए एक कार्यशील परिभाषा यह है कि अर्धचालक में, इलेक्ट्रॉन साधारण तापमान पर चालन बैंड तक पहुंच सकते हैं, जहां इन्सुलेटर में वे नहीं कर सकते हैं। संभावना है कि एक इलेक्ट्रॉन चालन बैंड तक पहुंचता है, एक्सप (-ग / 2kT) के बारे में है जहां ईजी बैंड अंतराल है और केटी का सामान्य अर्थ है। यदि यह संभावना है, तो कहें, <10-24 किसी को 1 घन सेंटीमीटर के ठोस में चालन बैंड में एक भी इलेक्ट्रॉन नहीं मिलेगा। इसके लिए Eg / 2kT> 55 की आवश्यकता होती है। कमरे के तापमान पर, 2kT = 0.05 eV; इस प्रकार ईजी> 2.8 ईवी को एक इन्सुलेटर के लिए स्थिति के रूप में इस्तेमाल किया जा सकता है।
अपेक्षाकृत छोटे ईजी होने के अलावा, अर्धचालकों में सहसंयोजक बंधन होता है, जबकि इन्सुलेटर आमतौर पर आंशिक रूप से आयनिक बंधन होते हैं।

17.7 इलेक्ट्रॉन गतिशीलता

इलेक्ट्रॉनों को एक विद्युत क्षेत्र ई में त्वरित किया जाता है, क्योंकि उनके नकारात्मक चार्ज के कारण क्षेत्र के विपरीत दिशा में। इलेक्ट्रॉन पर कार्य करने वाला बल -EE है, जहां e विद्युत आवेश है। यह बल एक निरंतर त्वरण पैदा करता है ताकि, बाधाओं की अनुपस्थिति में (एक टीवी ट्यूब के अंदर वैक्यूम की तरह), इलेक्ट्रॉन
एक विद्युत क्षेत्र में लगातार गति करता है। एक ठोस में, स्थिति अलग है। इलेक्ट्रॉनों परमाणुओं और रिक्तियों के साथ टकराव से बिखरते हैं जो उनकी गति की दिशा में काफी बदलाव करते हैं। इस प्रकार इलेक्ट्रॉन अनियमित रूप से चलते हैं लेकिन विद्युत क्षेत्र के विपरीत दिशा में शुद्ध बहाव के साथ। बहाव का वेग स्थिर होता है, विद्युत क्षेत्र के बराबर एक स्थिर समय जिसे गतिशीलता m, vd = – me E कहा जाता है

जिसका अर्थ है कि वेग के समानुपाती बल है। यह घर्षण ऊर्जा में परिवर्तित होता है जो गर्मी के रूप में जाली में जाती है। यह तरीका है कि इलेक्ट्रिक हीटर काम करते हैं।
विद्युत चालकता है:
s = n | e | मुझे
जहां n इलेक्ट्रॉनों की एकाग्रता है (n का उपयोग यह इंगित करने के लिए किया जाता है कि बिजली के वाहक नकारात्मक कण हैं)।

17.8 धातुओं की विद्युत प्रतिरोधकता

प्रतिरोधकता तब टकरावों पर निर्भर करती है। क्वांटम यांत्रिकी हमें बताता है कि इलेक्ट्रॉन तरंगों की तरह व्यवहार करते हैं। इसका एक प्रभाव यह है कि इलेक्ट्रॉन एक परिपूर्ण जाली से नहीं बिखरते हैं। वे दोषों से बिखरते हैं,
जो हो सकते हैं:

  • जाली कंपन द्वारा विस्थापित परमाणु
  • रिक्तियों और बीचवाला
  • dislocations, अनाज बाउंस daries
  • दोष

थर्मल कंपन, अशुद्धियों और अव्यवस्थाओं के कारण प्रतिरोधों के योग के रूप में, मैथेथेसियन शासन द्वारा कुल प्रतिरोधकता आरटीओटी को व्यक्त किया जा सकता है। अंजीर। 19.8 दिखाता है कि कैसे प्रतिरोधकता तापमान के साथ, विरूपण के साथ, और मिश्र धातु के साथ बढ़ती है।

17.9 वाणिज्यिक मिश्र के विद्युत लक्षण

विद्युत चालन (कम प्रतिरोधकता) के लिए सबसे अच्छी सामग्री चांदी है। चूंकि यह बहुत महंगा है, तांबे को पसंद किया जाता है, आर में केवल मामूली वृद्धि पर। कम आर प्राप्त करने के लिए निर्माण के दौरान धातु में मौजूद गैसों को निकालना आवश्यक है। तांबा नरम है, इसलिए ऐसे अनुप्रयोगों के लिए जहां यांत्रिक शक्ति महत्वपूर्ण है, मिश्र धातु CuBe का उपयोग किया जाता है, जिसमें लगभग r अच्छा है। जब वजन महत्वपूर्ण होता है, तो अल का उपयोग करता है, जो कि क्यूई के मुकाबले आधा है। अल जंग के लिए भी अधिक प्रतिरोधी है।
जब उच्च प्रतिरोधकता वाली सामग्रियों की आवश्यकता होती है, जैसे विद्युत हीटरों में, विशेष रूप से वे जो उच्च तापमान पर संचालित होते हैं, तो निचे क्रोम (NiCr) या ग्रेफाइट का उपयोग किया जाता है।

17.10 आंतरिक सेमीकंडक्टर

अर्धचालक आंतरिक या बाहरी हो सकते हैं। आंतरिक का मतलब है कि विद्युत चालकता अशुद्धियों पर निर्भर नहीं करती है, इस प्रकार आंतरिक आंतरिक शुद्ध का मतलब है। बाह्य अर्धचालकों में चालकता अशुद्धियों की एकाग्रता पर निर्भर करती है।
चालन इलेक्ट्रॉनों और छिद्रों द्वारा होता है। एक विद्युत क्षेत्र में, इलेक्ट्रॉन और छेद विपरीत दिशा में चलते हैं क्योंकि उनके विपरीत शुल्क होते हैं। एक आंतरिक अर्धचालक की चालकता है:  s = n | e | मुझे + पी | ई | MH

जहां p छेद की एकाग्रता है और छेद की गतिशीलता को mh करता है। एक ने पाया कि इलेक्ट्रॉनों छेदों की तुलना में बहुत तेजी से आगे बढ़ते हैं: मुझे> एमएच

एक आंतरिक अर्धचालक में, प्रत्येक इलेक्ट्रॉन द्वारा प्रवाहकत्त्व बैंड को बढ़ावा देने के लिए एक छेद का उत्पादन किया जाता है। इस प्रकार: n = p
इस प्रकार, s = 2 n | e | (me + mh) (केवल आंतरिक अर्धचालकों के लिए)।

17.11 बाहरी सेमीकंडक्टर

आंतरिक अर्धचालकों के विपरीत, एक बाहरी अर्धचालक में छेद और इलेक्ट्रॉनों की अलग-अलग सांद्रता हो सकती है। इसे p- प्रकार कहा जाता है यदि p> n और n- प्रकार यदि n> p। वे डोपिंग द्वारा बनाए जाते हैं, अशुद्धता परमाणुओं की एक बहुत छोटी सांद्रता के अलावा। डोपिंग के दो सामान्य तरीके प्रसार और आयन आरोपण हैं।
अतिरिक्त इलेक्ट्रॉन वाहक उन संस्थागत अशुद्धियों द्वारा निर्मित होते हैं जिनमें अर्धचालक मैट्रिक्स की तुलना में परमाणु में अधिक वैलेंस इलेक्ट्रॉन होते हैं। उदाहरण के लिए, फॉस्फोरस, 5 वैलेंस इलेक्ट्रॉनों के साथ, सी में एक इलेक्ट्रॉन दाता है क्योंकि केवल 4 इलेक्ट्रॉनों का उपयोग सी जाली के बंधन के लिए किया जाता है जब यह सी परमाणु के लिए विकल्प होता है। इस प्रकार, आवर्त सारणी के कॉलम V और VI में तत्व IV स्तंभ, Si और Ge में अर्धचालकों के लिए दाता हैं। दाता राज्य का ऊर्जा स्तर चालन बैंड के करीब है, ताकि इलेक्ट्रॉन को कमरे के तापमान पर आसानी से (आयनित) बढ़ावा दिया जाता है, जिससे एक छेद (आयनित दाता) पीछे रह जाता है। चूंकि यह छेद मैट्रिक्स में एक छेद के विपरीत है, यह आसन्न परमाणुओं से इलेक्ट्रॉनों को कैप्चर करके आसानी से स्थानांतरित नहीं होता है। इसका मतलब यह है कि चालन
मुख्य रूप से दान किए गए इलेक्ट्रॉनों द्वारा होता है (इस प्रकार एन-प्रकार)।
अतिरिक्त छिद्रों को संस्थागत अशुद्धियों द्वारा उत्पादित किया जाता है, जिसमें मैट्रिक्स की तुलना में प्रति परमाणु कम वैलेंस इलेक्ट्रॉन होते हैं। यह कॉलम IV में अर्धचालक जैसे समूह II और III के तत्वों का मामला है। पड़ोसियों के साथ बंधन अधूरा है और इसलिए वे आसन्न सिलिकॉन परमाणुओं से इलेक्ट्रॉनों को पकड़ या स्वीकार कर सकते हैं।
उन्हें स्वीकारकर्ता कहा जाता है। स्वीकर्ता का ऊर्जा स्तर वैलेंस बैंड के करीब होता है, जिससे एक इलेक्ट्रॉन आसानी से वैलेंस बैंड से एक छेद को पीछे छोड़ते हुए बंधन को पूरा कर सकता है। इसका मतलब है कि चालन मुख्य रूप से छिद्रों (इस प्रकार पी-प्रकार) से होता है।

17.12 कंडक्टिविटी और कैरियर एकाग्रता का तापमान भिन्नता

तापमान के कारण इलेक्ट्रॉनों को प्रवाहकत्त्व बैंड से और दाता के स्तर से, या छेदों को एकरस स्तर तक बढ़ावा दिया जाता है। तापमान पर चालकता की निर्भरता अन्य थर्मल सक्रिय प्रक्रियाओं की तरह है: s = A exp (–Eg / 2kT)

जहां A स्थिर है (तापमान के साथ गतिशीलता बहुत धीरे-धीरे बदलती है)। प्लॉटिंग ln s बनाम 1 / T ढलान की सीधी रेखा Eg / 2k पैदा करता है जिससे बैंड गैप एनर्जी को निर्धारित किया जा सकता है। बाहरी अर्धचालक, इस निर्भरता के अलावा, एक दाता के स्तर से इलेक्ट्रॉनों के थर्मल संवर्धन या स्वीकर्ता स्तर से छेद के कारण होता है। तापमान पर निर्भरता भी घातीय है लेकिन यह अंततः उच्च तापमान पर संतृप्त होता है जहां सभी दाताओं को खाली कर दिया जाता है या सभी स्वीकर्ता को भर दिया जाता है।
इसका मतलब है कि कम तापमान पर, बाह्य अर्धचालकों में आंतरिक अर्धचालकों की तुलना में बड़ी चालकता होती है। उच्च तापमान पर, अशुद्धता के स्तर और वैलेंस इलेक्ट्रॉनों दोनों को आयनित किया जाता है, लेकिन चूंकि अशुद्धियां संख्या में बहुत कम हैं और वे समाप्त हो जाती हैं, अंततः व्यवहार में आंतरिक प्रकार की चालकता का प्रभुत्व है।

17.14 सेमीकंडक्टर डिवाइस

एक सेमीकंडक्टर डायोड एक पी-टाइप के अंतरंग जंक्शन और एक एन-टाइप सेमीकंडक्टर (एक एनपी जंक्शन) द्वारा बनाया जाता है। एक धातु के विपरीत, विद्युत प्रवाह की तीव्रता जो सामग्री से गुजरती है, लागू वोल्टेज की ध्रुवता पर निर्भर करती है। यदि एक बैटरी का सकारात्मक पक्ष पी-साइड से जुड़ा हुआ है, तो एक स्थिति जिसे फॉरवर्ड बायस कहा जाता है, बड़ी मात्रा में करंट प्रवाहित हो सकता है क्योंकि छेद और इलेक्ट्रॉनों को जंक्शन क्षेत्र में धकेल दिया जाता है, जहां वे पुनर्संयोजन (विनाश) करते हैं। यदि वोल्टेज की ध्रुवता को फ़्लिप किया जाता है, तो डायोड रिवर्स पूर्वाग्रह के तहत संचालित होता है। जंक्शन के क्षेत्र से छेद और इलेक्ट्रॉनों को हटा दिया जाता है, जो इसलिए वाहक से रहित हो जाता है और एक इन्सुलेटर की तरह व्यवहार करता है। इस कारण से, रिवर्स पूर्वाग्रह के तहत वर्तमान बहुत छोटा है। डायोड की असममित वर्तमान-वोल्टेज विशेषताओं (छवि 19)। 20) प्रत्यावर्ती धारा को प्रत्यक्ष धारा में परिवर्तित करने के लिए उपयोग किया जाता है। इसे रेक्टिफिकेशन कहते हैं।
एक pnp जंक्शन ट्रांजिस्टर में दो डायोड बैक-टू-बैक होते हैं। मध्य क्षेत्र बहुत पतला है और इसे आधार कहा जाता है। बेस पर लगाए गए एक छोटे वोल्टेज का ट्रांजिस्टर के माध्यम से गुजरने वाले वर्तमान पर एक बड़ा प्रभाव पड़ता है, और इसका उपयोग विभिन्न सिग्नलों को बढ़ाने के लिए किया जा सकता है (चित्र। 19.22)। एक अन्य सामान्य उपकरण MOSFET ट्रांजिस्टर है जहां एक गेट एक जंक्शन ट्रांजिस्टर में आधार के कार्य को संचालित करता है। ट्रांजिस्टर के माध्यम से करंट का नियंत्रण गेट द्वारा प्रेरित विद्युत क्षेत्र के माध्यम से होता है, जिसे ऑक्साइड परत द्वारा विद्युत रूप से पृथक किया जाता है।

17.15 आयनिक सामग्री में संवहन

आयनिक सामग्रियों में, थर्मल इलेक्ट्रॉन संवर्धन के लिए बैंड गैप बहुत बड़ा है। राशन की रिक्तियां एक लागू विद्युत क्षेत्र की दिशा में आयनिक गति की अनुमति देती हैं, इसे आयनिक चालन कहा जाता है। उच्च तापमान अधिक रिक्तियों और उच्च आयनिक चालकता का उत्पादन करते हैं।
कम तापमान पर, इन्सुलेटरों में विद्युत चालन आमतौर पर सतह के साथ होता है, नमी के जमाव के कारण जिसमें अशुद्धता आयन होते हैं।

17.16 पॉलिमर के विद्युत गुण

पॉलिमर आमतौर पर अच्छे इंसुलेटर होते हैं लेकिन डोपिंग द्वारा संचालित किए जा सकते हैं। टेफ्लॉन एक असाधारण अच्छा इन्सुलेटर है।

ढांकता हुआ व्यवहार

एक ढांकता हुआ एक विद्युत इन्सुलेटर है जिसे विद्युत द्विध्रुवीय संरचना का प्रदर्शन करने के लिए बनाया जा सकता है (नकारात्मक और सकारात्मक चार्ज को विस्थापित करता है ताकि उनके गुरुत्वाकर्षण का केंद्र अलग हो)।

17.17 क्षमता

जब क्षेत्र A की दो समानांतर प्लेटें, एक छोटी दूरी l से अलग हो जाती हैं, तो + Q, -Q द्वारा चार्ज की जाती हैं, प्लेटों के बीच एक विद्युत क्षेत्र विकसित होता है
E = D / ee0

जहां डी = क्यू / ए। e0 को वैक्यूम पारगम्यता और e को सापेक्ष पारगम्यता, या ढांकता हुआ स्थिरांक (e = 1 वैक्यूम के लिए) कहा जाता है। प्लेटों के बीच वोल्टेज के संदर्भ में, V = E l, V = Dl / ee0 = Q l / Aee0 = Q / C
स्थिर C = Aee0 / l को प्लेटों का समाई कहा जाता है।

17.18 फील्ड क्षेत्र और ध्रुवीकरण

दूरी d पर अलग धनात्मक और ऋणात्मक आवेशों (+ q और –q) की जोड़ी का द्विध्रुवीय क्षण p = qd है। यदि एक विद्युत क्षेत्र लागू किया जाता है, तो द्विध्रुवीय संरेखित होता है ताकि क्षेत्र में सकारात्मक चार्ज बिंदु इंगित करता है। संधारित्र की प्लेटों के बीच डिपोल एक विद्युत क्षेत्र का उत्पादन करेगा जो लागू क्षेत्र का विरोध करता है। किसी दिए गए वोल्टेज वोल्टेज V के लिए, प्लेटों में एक मात्रा Q ‘द्वारा आवेश में वृद्धि होगी ताकि कुल आवेश Q = Q’ + Q0 हो जाए, जहाँ Q0 उसी V के साथ निर्वात संधारित्र का आवेश है।
Q ‘= PA के साथ, चार्ज घनत्व D = D0 E + P हो जाता है, जहां ध्रुवीकरण P = e0 (e-1) E होता है।

19.19 ध्रुवीकरण के प्रकार

एक विद्युत क्षेत्र के कारण तीन प्रकार के ध्रुवीकरण हो सकते हैं:

  1. इलेक्ट्रॉनिक ध्रुवीकरण: परमाणुओं में इलेक्ट्रॉनों को नाभिक के सापेक्ष विस्थापित किया जाता है।
  2. आयनिक ध्रुवीकरण: आयनिक क्रिस्टल में कटियन और आयन एक दूसरे के संबंध में विस्थापित होते हैं।
  3. ओरिएंटेशन ध्रुवीकरण: स्थायी द्विध्रुव (जैसे H2O) संरेखित होते हैं।

17.20 ढांकता हुआ निरंतर की निर्भरता

इलेक्ट्रॉनों में आयनों की तुलना में बहुत कम द्रव्यमान होता है, इसलिए वे बदलते विद्युत क्षेत्र में अधिक तेजी से प्रतिक्रिया करते हैं। विद्युत क्षेत्र के लिए जो बहुत अधिक आवृत्तियों (जैसे प्रकाश) पर दोलन करता है केवल इलेक्ट्रॉनिक ध्रुवीकरण हो सकता है। छोटी आवृत्तियों पर, सकारात्मक और नकारात्मक आयनों के सापेक्ष विस्थापन हो सकते हैं। स्थायी द्विध्रुवों का अभिविन्यास, जिसके लिए एक अणु के रोटेशन की आवश्यकता होती है केवल तभी हो सकता है जब दोलन अपेक्षाकृत धीमा हो (मेगाहर्ट्ज रेंज या धीमी)। विशिष्ट ध्रुवीकरण होने के लिए आवश्यक समय को विश्राम समय कहा जाता है।

17.21 ढांकता हुआ ताकत

बहुत उच्च विद्युत क्षेत्र (> 108 V / m) परमाणुओं से इलेक्ट्रॉनों को मुक्त कर सकते हैं, और उन्हें ऐसी उच्च ऊर्जाओं में तेजी ला सकते हैं जो वे कर सकते हैं, बदले में, अन्य इलेक्ट्रॉनों को, एक हिमस्खलन प्रक्रिया (या विद्युत निर्वहन) में। इसे ढांकता हुआ टूटना कहा जाता है, और शुरू करने के लिए आवश्यक क्षेत्र को ढांकता हुआ ताकत या ब्रेकडाउन ताकत कहा जाता है।

17.22 ढांकता हुआ सामग्री

कैपेसिटर के लिए उच्च ई के डेलेक्ट्रिक्स की आवश्यकता होती है जो उच्च आवृत्तियों (छोटे विश्राम समय) पर कार्य कर सकते हैं। कई सिरेमिक में ये गुण हैं, जैसे कि माइका, ग्लास और चीनी मिट्टी के बरतन)। पॉलिमर में आमतौर पर कम ई होता है।

17.23 फेरोइलेक्ट्रिसिटी

फेरोइलेक्ट्रिक सामग्री सिरेमिक हैं जो एक विद्युत क्षेत्र की अनुपस्थिति में स्थायी ध्रुवीकरण का प्रदर्शन करते हैं। यह यूनिट सेल के भीतर सकारात्मक और नकारात्मक चार्ज के असममित स्थान के कारण है। इस विषमता की दो संभावित व्यवस्थाओं के परिणामस्वरूप दो अलग-अलग ध्रुवीकरण होते हैं, जिसका उपयोग फेरोइलेक्ट्रिक यादों में “0” और “1” कोड के लिए किया जा सकता है। एक विशिष्ट फ़ेरोइलेक्ट्रिक बेरियम टाइटेनैट, बाटीओ 3 है, जहां टीआई 4 + यूनिट सेल के केंद्र में है और केंद्रीय विमान में चार ओ 2- एक तरफ या इस केंद्रीय आयन के दूसरे को विस्थापित किया जा सकता है।

17.24 पीजोइलेक्ट्रिसिटी

एक पीजोइलेक्ट्रिक सामग्री में, क्वार्ट्ज की तरह, एक लागू यांत्रिक तनाव, आयनों और उद्धरणों के सापेक्ष विस्थापन द्वारा विद्युत ध्रुवीकरण का कारण बनता है।

Electrical Properties
Material Science and Engineering

Electrical Properties

17) Electrical Properties Electrical Conduction 17.2 Ohm’s Law When an electric potential V is applied across a material, a current...
Read More
Material Science and Engineering


16) Composites 16.1 Introduction The idea is that by combining two or more distinct materials one can engineer a new...
Read More
Polymers Characteristics, Applications and Processing
Material Science and Engineering

Polymers Characteristics, Applications and Processing

15) Polymers Characteristics, Applications and Processing 15.2 Stress-Strain Behavior The description of stress-strain behavior is similar to that of metals,...
Read More
Polymer Structures
Material Science and Engineering

Polymer Structures

14) Polymer Structures 14.1 Introduction Polymers are common in nature, in the form of wood, rubber, cotton, leather, wood, silk,...
Read More
Ceramics – Applications and Processing
Material Science and Engineering

Ceramics – Applications and Processing

13) Ceramics - Applications and Processing 13.1 Introduction Ceramics properties that are different from those of metals lead to different...
Read More
Ceramics – Structures and Properties
Material Science and Engineering

Ceramics – Structures and Properties

12) Ceramics - Structures and Properties 12.1 Introduction Ceramics are inorganic and non-metallic materials that are commonly electrical and thermal...
Read More
Material Science and Engineering

Thermal Processing of Metal Alloys

11) Thermal Processing of Metal Alloys  Annealing Processes11.1 IntroductionAnnealing is a heat treatment where the material is taken to a...
Read More
Material Science and Engineering

Phase Transformations in Metals

10) Phase Transformations in Metals 10.1 IntroductionThe goal is to obtain specific micro structures that will improve the mechanical properties...
Read More
Material Science and Engineering


9) PHASE DIAGRAMS  9.1 IntroductionDefinitionsComponent: pure metal or compound (e.g., Cu, Zn in Cu-Zn alloy, sugar, water, in a syrup.)Solvent:...
Read More
Material Science and Engineering

Fundamentals of Fracture

8) Fundamentals of Fracture  IntroductionFailure of materials may have huge costs. Causes included improper materials selection or processing, the improper...
Read More